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Abstract

A new approach for incorporation of excess free energy from an activity coefficient

model (ACM) into equation of state (EOS) has been proposed.  The approach is based on a

concept that any ACM is valid at a low but finite value of compressibility factor.  This condition

allows us to analyze the "infinite pressure" approximation in a general way.  It is shown that the

"infinite pressure" approach neglects the contribution of the repulsive term of the EOS to excess

free energy of a mixture.  This in turn introduces inconsistency which results in the difference in

the calculated excess free energy of the EOS and the base ACM.

The new approach defines parameter a of the EOS as an implicit function of

compositions and temperature thus requiring iterative procedure using the "infinite pressure

limit" as a starting point.  The new approach can be modified to provide the correct composition

dependence of a mixture second virial coefficient.  Applicability of the new method has been

tested for binary systems under vapor-liquid and liquid-liquid equilibrium conditions.

___________________________________________________________________________

Introduction

The various approaches to connect pressure-independent activity coefficient models with

equation of state have been reviewed recently by Heidemann[1] and Orbey and Sandler[2].  Such

connection has the following goals:

1. To make EOS mixing rules more flexible than the traditional one-fluid mixing rules.

2. To make qualitatively correct extrapolation into the range of elevated temperatures

beyond the critical temperature of a volatile component where ACM is not valid.

3. To avoid "Michelsen-Kistenmacher syndrome", from which many "flexible" empirical
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mixing rules suffer (see, for example, [3]).

4. To use extensive data banks of ACM parameters.

Any approach for incorporating ACM into EOS should imply equivalence of excess free

energy (Gibbs or Helmholz) defined by both models. To provide this equivalence one has to

eliminate density as an independent variable to reduce free energy from a function of density,

temperature and compositions to a function of temperature and compositions only.  Therefore,

it is necessary to define density (or pressure) by some suitable condition to eliminate one degree

of freedom.  This condition should provide low value of pressure to be consistent with the range

of validity of ACM [4].  The variety of ways in which this condition is defined produces the

variety of approaches for incorporating ACM into EOS and presents a key to the success or

failure of any approach.  The two commonly used approaches will be briefly discussed below.

"Infinite pressure" approach

The extensive series of investigations in this field was initiated by the pioneer work of

Huron and Vidal [5].  These authors defined Gibbs free energy departure as the difference in

Gibbs energy of the real system and that of the ideal gas at the same pressure, temperature and

compositions.  This definition differs from the standard definition in that the ideal gas state is at

the system pressure.  This definition helps avoid singularity at the limit of high density, but

produces some restrictions and inconsistencies.  In the strictest sense, the only possibility to keep

this condition for a pure component implies the real system as a saturated liquid and the ideal gas

as a saturated vapor.  In other words the consideration should be restricted by the range of low

pressures where a saturated vapor obeys the ideal gas law.  Moreover, the condition of the same

pressure, temperature and compositions for a liquid system and the ideal gas is not applicable for

any mixture because of the difference in bubble and dew curves;  this condition is valid for a

mixture at an azeotrope point only.

Wong and Sandler [6] later showed that it is more advantageous to use Helmholz free

energy instead of Gibbs free energy.  The Helmholz free energy departure for any van-der-Waals

type EOS using the definition mentioned above could be written as
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The expression for f(b/V) depends on a given form of the EOS (van-der-Waals (vdW), Redlich-

Kwong (RK), Peng-Robinson (PR), etc.).  Equation (1) is assumed to be valid for a mixture and

any of its constituent components.  The next step of incorporating ACM into EOS is to

eliminate  volume as an independent variable in eq.(1).  Huron and Vidal chose the simplest way

for this by introducing the "infinite pressure limit";  that is at infinite pressure,

This condition necessarily implies that free energy departure at infinitely high pressure is not

substantially different from the value defined by eq.(1) at low pressure.  Note also that the

“infinite pressure limit” is inconsistent with the definition of free energy departure used to derive

eq.(1) because it is not realistic to assume an ideal-gas state at infinite pressure.

Although being extremely crude this assumption does not affect drastically the final

result.  The reason will be explained below.

Substituting eq.(2) into (1) results in the simple expression

where c is a constant depending on a given EOS.  Applying eq.(3) for both the mixture and its

constituent components yields for excess Helmholz free energy:

Eq.(4) is the final result of the "infinite pressure" approach.  It connects excess free energy with

ratio   for the mixture EOS through compositions and known parameters of the

pure components.  Huron and Vidal assumed linear dependence of  on compositions;

substituting   from an ACM into eq.(4) they obtained a new mixing rule for parameter 

expressed in terms of ACM.  They also pointed out that EOS based on the new mixing rule did



Z ' 0

" ' a/(bRT)

" . 5

" ' 6 & 9

" " ' 9 & 14

"

(5)

not reproduce the base ACM result if the original ACM parameters were used. They attributed

this to the approximation (2).  Therefore, they reregressed the ACM parameters used in the new

mixing rule (4) and obtained satisfactory fit of experimental data.

Wong and Sandler [6] revitalized this approach in 1992.  They used two constraints for

the EOS parameters to arrive at correct composition dependence of the mixture second virial

coefficient which commonly is not satisfied by equation (4).  They introduced an adjustable

parameter formally related to the second virial coefficient but in fact assigned to correct the

approximation (2).  Adjusting this parameter replaced the necessity to redetermine parameters

of the ACM.

The “zero-pressure” approach

Another fundamental approach to incorporate ACM into EOS was developed by

Mollerup [4], Heidemann and Kokal [7], Michelsen [8] and Dahl and Michelsen [9].  The

approach uses the "zero pressure" condition to eliminate density as an independent variable:

This condition is consistent with the validity range of the ACM models.  The most popular

variant of "zero pressure" approach - MHV2 [9] reproduces successfully base ACM results.

However, some problems exist with calculations at elevated temperatures.  Although eq.(5) can

be solved over a wide range of reduced inverse temperature    (almost up to

critical point where ), the authors pointed out that the usage of direct solutions in the

range of    does not provide good results.  The probable reason is the significant

difference in the value of real liquid density at high temperature (and pressure) and the value

defined by eq.(5). They proposed a quadratic function of   in the range of  , then

extrapolate the function into the range of low  values.  The proposed extrapolation to high

temperatures creates the obvious problem for applicability of the MHV2 model to

multiparameter EOS.

"Finite pressure" approach

We proposed a new approach for incorporating ACM into EOS.  Analysis of this
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approach explains the reason of partial success and common failure of the "infinite pressure"

approach.  It is based on condition for density which is almost identical to equation (5) at low

temperatures (and pressures) but provides substantially nonzero pressure at high temperatures

including the near critical range thus avoiding the problem related to the "zero pressure"

approach.

The main idea of the present approach is to reduce the degree of freedom of EOS by

defining a condition in which the compressibility factor is equal to a small but finite value.  We

chose the dimensionless "free volume" as the limiting value.  At the limiting condition

where   and .

This condition implies validity of an ACM model in the range of compressiblity factor equal to

Z as calculated by eq.(6).  This choice brings algebraic convenience and looks reliable in a

physical aspect;  it provides increasing pressure with increasing temperature along the cross-

section of thermodynamic surface defined by eq.(6).  To avoid any misunderstanding, note that

eq.(6) is not a virial expansion for compressibility factor.

We will consider excess Helmholz free energy of a liquid mixture calculated by EOS of

van-der-Waals type under condition (6).  Helmholz free energy departure could be defined as a

difference in values of Helmholz free energy of a real system and the system of zero density at

the same temperature and compositions.  The definition removes the requirement that the

reference condition be at the same pressure.  Therefore

and for any EOS of van-der-Waals type

We will use the Redlich-Kwong-Soave (RKS) EOS as an illustrative example:
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Using condition (6) to express  RT  in terms of    

one can obtain:

where , and 

The first term in eq.(11) corresponds to the repulsive contribution of the EOS, and the second

term is a small part of the attractive contribution.  The first term is substantially larger than the

second term when    which is common in a liquid state.  Therefore, the function  

is contributed mostly by the repulsive intermolecular forces.

By setting    to zero,   becomes zero, and eq.(10) reduces to the original Huron-

Vidal result (eq.(3)).  However, such conversion is inconsistent because eq.(10) has been derived

using eq.(6) which is not applicable at   because compressibility factor Z of any EOS goes

to infinity at  .  In other words, eq.(6) has no solution at .

However, we can show that eq.(4) of Huron-Vidal can be obtained from the more

general formulation (10) using another assumption.  Using eq.(10), the expression for   is

Eq.(12) can be converted to the Huron-Vidal result (4) by setting

Although both eq.(2) and (13) allows eq.(4) to be obtained from eq.(10) and (12), the underlying
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assumptions and physical meaning are different.  Setting V = b, removes the contribution of the

repulsive forces from the free energy departure - an unreasonable assumption.  While eq.(13),

assumes that the excess free energy resulting from the repulsive forces is negligible - a plausible

assumption which explaines reasonable results of the “infinite pressure” approach.  Nevertheless,

using eq.(13) to arrive at eq.(4), still introduces inconsistency in the calculation of excess free

energy.  In phase equilibrium calculations, eq.(8) is used without the assumption of eq.(13),

while the mixing rules used in eq.(8) is derived using eq.(13). 

The ratio  can be considered as a measure of this inconsistency.  To avoid the

inconsistency one has to use implicit mixing rule presented by eq.(6) and the following

expression for :

where  is the excess Helmholz free energy calculated by ACM.  The system of eq.(6) and

(14) are solved for the unknown variables    and  .  Eq.(4) can be used as a good

zeroth approximation for .  For RKS EOS eq.(6) results in

where .  Note that  is the singular point for v, and eq.(15) becomes

meaningless for  .  However, this singularity and negative values of  v  have no practical

impact on analytical behavior of  as a function of .  The function   is plotted in Fig.1 as

the solid line.  The function is smooth up to   which provides validity of eq.(14) up to

temperature of   . 

 It is possible to extend the applicability of eq.(11) and (14) up to infinitely high

temperatures by expanding the second term of eq.(11) in powers of    and then keeping only

the linear term.  By also neglecting    in the denominator of the first term of eq.(11), we obtain

This simplified fuction is shown as dash line in Fig.1.  The difference in eq.(11) and (16) is
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negligible at   (large value of ), but eq.(16) provides the smooth extrapolation to

infinitely high reduced temperature  ( ), which is important for calculation of  for

highly volatile components (such as hydrogen). 

Starting from an approximate , we calculate   from its definition.  From eq. (15),

we calculate v which allows us to obtain .     is used in eq.(16) to obtain . Calculating

 and   leads to the next approximation for  ;  the iterative procedure is

continued until convergence. A simple algorithm providing fast convergence is described in the

Appendix.  An explicit solution of  as a function of    can also be obtained and will be

presented in a future study.

To complete the procedure of incorporating ACM into EOS, we must define the mixing

rules for parameter   .  We have chosen the theoretically based expression for :

where    is an adjustable parameter defining nonadditivity of the size parameter.  It can be

nonzero for components of substantially different shape and size.

Results 

Fig.2a,b show the results of calculating    and   for two binary

mixtures, where    is the Huron-Vidal approximation.  We can see that inconsistency of

this approximation increases rapidly with temperature which emphasizes the well known

importance of repulsive contribution at high temperature (and pressure).  The plots explaines the

need to redetermine ACM parameters in Huron-Vidal approach (or additional parameter by

Wong-Sandler).  Any approach based on the simple equation (4) must be corrected to

compensate for the fact that the important contribution by eq.(13) was neglected.

To illustrate the present approach we used some strongly nonideal systems which were

not used by other authors in previous studies.  These are ammonia-water, n-butane-methanol and

2-butanol-water binary mixtures.

VLE in ammonia-water system.  This well investigated binary mixture is an ideal subject

to test the extrapolation capability of any approach for incorporating an ACM into EOS.  We
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must realize that it is impossible to reproduce exactly by an EOS the results for equilibrium

properties calculated by the base ACM.  Eq.(14) provides equality of excess free energy, but its

derivatives with respect to compositions can be different. This difference should be negligible in

the range where liquid properties are almost independent of pressure and may be substantial

where dependence on pressure becomes significant.

The NRTL model was used as a base model.  The parameters were obtained by fitting

the 1 and 10 atm data of Chu et al. [10].  Fig.3a shows that the present approach with RKS EOS

and the NRTL model can reproduce the results of the base model and the original experimental

data.  Parameter    is zero for this system because of a small difference in the values of :

.  The results of the PSRK[11], MHV2[9] and WS[6] methods are shown in    Fig.

3b.  The parameter    for the WS model was determined by fitting the datum point of

equimolar composition at 10 atm.  The  value was abnormally high  ( ).  The

attempt to determine this value by using data at atmospheric pressure led to an inappropriate

value of   which distorted the shape of the 10 atm isobar.  This failure of the WS

model is an example of the difficulty in compensating for internal inconsistency of the model by

using an adjustable parameter.

Fig.4a,b show the extrapolation capability of the various methods.  The experimental

points are taken from[12]. Note that the RKS EOS based on the present method and the MHV2

model predict a maxima in the critical loci close to the critical point of water.  This agrees with

experimental data of [12] and [13], but contradicts the recent measurements [14].  

VLE in n-butane-methanol system.  The Wilson ACM with parameters from ASPEN

PLUS data bank was used as a base model for this system.  The data at 323 K from [15] were

used to determine   parameter for the present approach and    parameter for the WS

model.  We found the optimum value of  by adjusting pressure to match the ACM

value at  , and    for the WS model by regressing the data over the

entire range of compositions.  The data at 373 K were used for comparison only.  Results are

shown in Fig.5a and 5b.

LLE in 2-butanol-water system.  The LLE data used for this system exhibit a closed loop

behavior.  Temperature-dependent parameters of the NRTL-model were obtained by regressing
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data [16,17] at atmospheric pressure.  Data [16] are available in the wide range of pressure (up

to 800 atm) and provide the unique opportunity to investigate the capability of the present

approach to represent LLE at high pressure using pressure-independent ACM approximation.

We tested prediction of LLE by different EOS using the present approach:  Redlich-

Kwong-Soave and  Peng-Robinson.  Parameter    was determined by matching the data point

at 283 K [16].  The value    defines substantial nonlinearity of     and can be

explained by the large size differences of the components ( ).  The same value was

used for the PR EOS.  The two equations reproduce sufficiently the base ACM result (see

Fig.6a).  According to experimental data [16] phase splitting degrades with increasing pressure

and disappears at pressure higher than 800 atm.  However calculated phase splitting degrades

more rapidly and disappears at pressure higher than 300 atm.

The results of similar calculations using common methods are shown at Fig.7a,b.  The

MHV2 and PSRK do not reproduce properly the base model and do not show any degradation

of phase splitting if pressure increases.  High pressure results remain almost the same as those

for 1 atm.  The possible reason may be the use of linear dependence of  b on compositions.  The

WS model provides satisfactory  results after adjusting   to the 1 atm data  ( ).

Calculations at high pressures show the stronger degradation of phase splitting with increasing

pressure as observed with the present approach.

Second virial coefficient consideration

It was pointed out by Wong and Sandler [6] that the common way of incorporating ACM

into EOS violates correct composition dependence of the second virial coefficient.  Such

deficiency is true for parameter   of the present approach. We considered the simple way to

correct this deficiency by adding the following term to the EOS:

where
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In low density region, the attractive term of the original EOS reduces to  which cancels

with the   term introduced into eq.(18).  This leaves the   term which provides the

correct composition dependence of a second virial coefficient.  However calculations for the

systems described above have shown that including correction (18) into the EOS has no practical

significance.

Conclusion

1.  A new approach for incorporation of excess free energy from ACM into EOS of van-

der-Waals type has been proposed.  The approach connects any ACM with the EOS at some low

but finite value  of compressibility factor and results in implicit mixing rule for parameter    of

the  EOS.

2.  The approach can be reduced to the Huron-Vidal mixing rule by neglecting the

contribution of repulsive term of EOS to excess free energy.  This simplification introduces

inconsistency in the free energy calculation which explains the need to redetermine the base

ACM parameters or the need to introduce additional adjustable parameters.

3.  The new approach was tested on examples of VLE and LLE in binary systems which

could not be described adequately by conventional mixing rules.

Appendix.  Algorithm for solving equations (6) and (14).

The system of eq.(6), (14) can be reduced to nonlinear equation for    by

expressing    as :

Solution of eq.(A-1) can be obained by

and
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where    is the zeroth approximation obtained from eq.(4) and    is the result of the first

“simple iteration” for eq.(14) obtained by substituting  into eq.(15), and eq.(14).
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List of symbols

A - Helmholtz free energy;

a - temperature dependent parameter of a cubic EOS;

b - "covolume" parameter of a cubic EOS;

c - constant in the equation for A;

p - pressure;

R - gas constant;

r - ratio of the zeroth approximation for a/b to the actual a/b;

T - temperature;

V - molar volume;

v - dimensionless volume: v = V/b.

 - "free volume";

 - composition of component "i" in mixture;

Z - compressibility factor.

Greek letters:

 - dimensionless parameter: .

 - departure function;

 - function of    defined by eq.(10), (11);

 - summation.

Superscripts:



ACM - denotes value calculated by activity coefficient model;

(0) - zeroth approximation;

(1) - first approximation;

(n) - n-th approximation.

Subscripts:

ex - excess property;

i,m - pure component and mixture property, respectively;
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FIGURE CAPTIONS

Fig.1.  Original (solid line) and modified (dash line) function    for RK EOS.

Fig.2a.  Illustration of inconsistency of “infinite pressure” approach for n-butane-methanol

system. The curves 1,2 are assigned to the right axis, and the curves 3,4 - to the left

one. The dash lines are for T = 273 K, and the solid lines are for T = 373 K. The 

calculations of  were done using Wilson model with parameters from ASPEN 

PLUS databank.

Fig.2b.  Illustration of inconsistency of “infinite pressure” approach for acetone-water binary 

system.  The assignment to axes is the same as described for Fig.2a.  The dash lines are

for T = 298 K, and the solid lines are for T = 473 K.  The calculation of were

done using UNIQUAC model with parameters from ASPEN PLUS data bank.

Fig.3a.  Reproducing the base ACM and the original experimental VLE data for ammonia-

water system by the present approach .

Fig.3b.  Reproducing the base ACM results for ammonia-water system by the 

commonly used models.

Fig.4a.  Comparison of experimental VLE data for ammonia-water system at high 

temperatures with extrapolation using the present approach.

Fig.4b.  Comparison of experimental VLE data for ammonia-water system at high 

temperatures with extrapolation using the common models.

Fig.5a.  Reproducing the base ACM and the original experimental VLE data for n-butane-

methanol system at T = 323 K by the present approach and the commonly used models.

Fig.5b.  The same as for Fig.5a at T = 373 K.

Fig.6a.  Reproducing the base NRTL-model and experimental data on LLE in 2-butanol-water

system at 1 atm by different EOS using the present approach. “Exp 1" and

“Exp 2" are data [16] and [17] respectively. 

Fig.6b.  The same as for Fig.6a at 300 atm.

Fig.7a.  Reproducing the base model and experimental data [16] on LLE in butanol-water

system at 1 atm by commonly used methods with RKS EOS. 

Fig.7b.  The same as for Fig.6a at 300 atm.






















